Application of boundary element method for elastodynamics to defect shape identification
نویسندگان
چکیده
منابع مشابه
Fast Multipole Boundary Element Method in 2D Elastodynamics
This paper is concerned with the fast multipole boundary element method (FMBEM) in two dimensional frequency domain elastodynamics. The fast multipole method (FMM) is derived by the Galerkin vector in the elastodynamic field. The elastodynamic field is expressed as the sum of the longitudinal and transverse wave fields, and the Galerkin vector FMM is simply derived from the scalar wave FMM. Mul...
متن کاملApplication of the Boundary Element Method to two Dimensional Dynamic Problems of Saturated Porous Media
متن کامل
Application of Decoupled Scaled Boundary Finite Element Method to Solve Eigenvalue Helmholtz Problems (Research Note)
A novel element with arbitrary domain shape by using decoupled scaled boundary finite element (DSBFEM) is proposed for eigenvalue analysis of 2D vibrating rods with different boundary conditions. Within the proposed element scheme, the mode shapes of vibrating rods with variable boundary conditions are modelled and results are plotted. All possible conditions for the rods ends are incorporated ...
متن کاملApplication of the Boundary Element Method to two Dimensional Dynamic Problems of Saturated Porous Media
متن کامل
Application of Boundary Element Method to 3 D Submerged Structures With Open Ends (RESEARCH NOTE)
This paper presents a three dimensional application of direct Boundary-Element Method (BEM) for computing interaction of sinusoidal waves with a large submerged open bottom structure near the floor with finite depth. The wave diffraction problem is formulated within the framework of linearized potential theory and solved numerically with direct BEM. A computer program based on BEM is developed ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Mathematical and Computer Modelling
سال: 1991
ISSN: 0895-7177
DOI: 10.1016/0895-7177(91)90074-h